Backpropagation Algorithm
Let’s say:
- \(e\) denote the loss between network output and real value
- \(U_i^k\) denote the \(i\)-th node total input value in level \(k\)
- \(X_i^k\) denote the \(i\)-th node output value in level \(k\)
- \(W_{i,j}^k\) denote the weight between \(i\)-th node in level \(k-1\) and \(j\)-th node in level \(k\)
- \(\Delta W_{i,j}^k\) denote the increment of \(W_{i,j}^k\) in each iteration
- \(f_i^k\) denote the \(i\)-th node activation function in level \(k\)
- \(\partial{f_i^k}\) denote the derivation of \(i\)-th node activation function in level \(k\)
- \(\alpha\) denote the learning rate.
The value flow:
\[X^{k-1} \xrightarrow{W^k} U^k \xrightarrow{f^k} X^{k}\]The error flow:
\[e \longrightarrow X^k \xrightarrow{f^k} U^k \xrightarrow{X^{k-1}} W^k\]Derivation process:
\[\begin{align*} \frac{\partial{e}}{\partial{X_i^k}} &=\sideset{}{_l}\sum{ \frac{\partial{e}}{\partial{U_l^{k+1}}} \times \frac{\partial{U_l^{k+1}}}{\partial{X_i^k}}} \\ &=\sideset{}{_l}\sum{ \frac{\partial{e}}{\partial{U_l^{k+1}}} \times \frac{\partial{(\sideset{}{_m} \sum{W_{m,l}^{k+1} \times X_m^k}})}{\partial{X_i^k}}} \\ &=\sideset{}{_l}\sum{ \frac{\partial{e}}{\partial{U_l^{k+1}}} \times W_{i,l}^{k+1}} \\ \frac{\partial{e}}{\partial{U_i^k}} &= \frac{\partial{e}}{\partial{X_i^k}} \times \frac{\partial{X_i^k}}{\partial{U_i^k}}\\ &= \frac{\partial{e}}{\partial{X_i^k}} \times \partial{f_i^k}\\ &= (\sideset{}{_l}\sum{ \frac{\partial{e}}{\partial{U_l^{k+1}}} \times W_{i,l}^{k+1}} ) \times \partial{f_i^k}\\ \frac{\partial{e}}{\partial{W_{i,j}^k}} &= \frac{\partial{e}}{\partial{U_j^{k}}} \times \frac{\partial{U_j^k}}{\partial{W_{i,j}^k}} \\ &=\frac{\partial{e}}{\partial{U_j^{k}}} \times \frac{\partial{\sideset{}{_l} \sum{(X_l^{k-1} \times W_{l,j}^k)}}}{\partial{W_{i,j}^k}} \\ &= \frac{\partial{e}}{\partial{U_j^{k}}} \times X_i^{k-1} \end{align*}\]Alogorithm:
\[\begin{align*} \Delta W_{i,j}^k &=- \alpha \times \frac{\partial{e}}{\partial{W_{i,j}^k}} \\ W_{i,j}^k(t)&=W_{i,j}^k(t-1)+\Delta W_{i,j}^k(t-1) \end{align*}\]
Comments